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Radiocaesium  sorption  interaction  descriptors  were  examined  in  30  soil  samples  from  Spain.  Mechanistic
and  regression  models  were  used  to predict  the solid–liquid  distribution  coefficients  of radiocaesium
(Kd(Cs))  based  on soil  properties,  and  the  obtained  values  were  compared  with  the  experimental  ones,
which  were  derived  from  batch  experiments.  The  batch  experiments  used  two  contact  solutions:  one
simulated  the composition  of  the soil  solution,  and  the  other  was  the wash-off  from  the  soil.  Several
mechanistic  models  of  different  complexity  were  tested  based  on  the Radiocaesium  Interception  Potential
(RIP), with  satisfactory  agreement  between  experimental  and  predicted  values.  A simplified  model  based
oil
orption
adiocaesium interception potential
istribution coefficient
odelling

on either  the  RIP,  or  the  clay  content  and  K  status  of the soil  was  proposed.  Various  multivariant  regression
models,  which  were  constructed  using  the  Partial  Least  Square  Regression  (PLS),  were  also  evaluated.  The
RIP,  clay  content,  and  the  K  and  NH4

+ contents  were  also  identified  by  the  regression  models  as  the  most
relevant  soil  parameters  to predict  the  Kd. As  seen  for the  mechanistic  models,  the  goodness  of  fit  of the
regression  models  was  demonstrated  by an  excellent  agreement  between  experimental  and  predicted

values.

. Introduction

Understanding the behaviour of radionuclides in the envi-
onment is necessary to predict the impact of radioactive
ontamination and to assess its derived risk. The mobility of
adionuclides such as radiocaesium within the environment is
ainly controlled by their sorption in soils and by the reversibil-

ty of this process. Radiocaesium has been the focus of a large
umber of environmental studies because it was the most rel-
vant radionuclide that affected European ecosystems after the
hernobyl accident [1].  Numerous studies in the literature have

ocused on describing the mechanisms that govern radiocaesium
orption in soils and their subsequent mobility in the soil–plant
ystem [2–4]. It has been shown that radiocaesium sorption is con-
rolled by ionic exchange at two types of sites with varying sorption
ffinities: the high-affinity frayed edge sites (FES), which are inter-
attice sites that are found at the end of expanded clay layers, and
he low-affinity regular exchange sites (RES), which are found in
rganic matter phases and at external positions in clay minerals.
ith the exception of soils with a high organic matter content or a
egligible 2:1 phyllosilicate content, the FES govern radiocaesium
orption, which also ensures a high sorption irreversibility [2–7].

∗ Corresponding author. Tel.: +34 934039276; fax: +34 934021233.
E-mail address: miquel.vidal@ub.edu (M.  Vidal).
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The solid–liquid distribution coefficient (Kd) is a useful param-
eter to characterise the radionuclide behaviour at solid–liquid
interfaces. Although it is not a thermodynamic constant, the
Kd integrates simultaneous physicochemical processes, and it
is highly dependent on liquid and solid phase characteristics
[8–10]. The quantification of Kd values can be made using vari-
ous experimental approaches [11–13],  although batch experiments
are the most widely used approach [14,15].  There is a gen-
eral agreement that Kd values can be used as input data for
environmental decision support models [16]. However, there
is still a major concern about the apparently high variability
of the Kd data because the values depend not only on soil
characteristics, but also on experimental conditions. These vari-
ables include the cationic composition of the contact solution,
the contact time, and the concentration of the stable element
related to the radioisotope. Recent studies have succeeded in
reducing the variability of the best estimate of the radiocae-
sium distribution coefficient (Kd(Cs)) for a given type of soil
[17,18]. In these approaches, soils were grouped with respect
to textural classes, organic matter content, or on the basis
of specific parameters that govern radiocaesium interaction in
soils. After data that were considered outliers or were gen-
erated from non-representative experimental conditions were

discarded, an estimation of the Kd(Cs) could be made [17]. How-
ever, for a given soil group, the best estimate of the Kd(Cs)
still varied by several orders of magnitude [17], and a uni-
variant correlation between Kd(Cs) values and a given soil

dx.doi.org/10.1016/j.jhazmat.2011.09.048
http://www.sciencedirect.com/science/journal/03043894
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roperty could not be properly established. Thus, the possibility of
alculating an individual Kd(Cs) value for a fully characterised soil
as reduced.

Here, we tested two modelling approaches to describe the range
f Kd(Cs) values that have been experimentally obtained for a set
f soils [19] and to predict an individual Kd(Cs) value based on
oil properties. A mechanistic model was constructed based on the
nowledge of radiocaesium interaction in soils, which relied on
he concept of the Radiocaesium Interception Potential (RIP), the
ationic composition of the contact solution, and the clay content
n the soil samples. This approach was compared with a regression

odel based on the use of the Partial Least Square Regression (PLS),
hich has been successfully applied to predict other radiological
arameters, such as soil–plant transfer [20] and the distribution
oefficient of other radionuclides [21].

. Materials and methods

.1. Soil samples

Thirty agricultural soils were sampled in locations near radioac-
ive facilities and nuclear power plants in Spain. The samples were
aken from portions of the surface layer (0–10 cm depth). Prior to
he analyses and experiments, the samples were air-dried, passed
hrough 2-mm sieves and homogenised in 5–10 L cylinder bottles
or 90 h with a roller table.

.2. General soil characteristics

Table 1 summarises the ranges of values for general and spe-
ific quantified soil characteristics. Individual values are available
lsewhere [19]. Soils were mineral-based, with a maximum Corg

ontent lower than 10%. Most soils had a loamy texture, and a few
ad clay (5 soils) and sandy (1 soil) textures. Unlike soils from tem-
erate areas, many of the examined soils had a clay content over
0%, a pH value over 8, and a CaCO3 content over 25%.

.3. X-ray diffraction (XRD) analyses of the soil samples

Soil samples were also analysed by XRD to quantify the total con-
ent of phyllosilicates and 2:1 phyllosilicates, in addition to other
rystalline phases. The determination of the soil mineralogy was
arried out with powder samples, whereas for the determination
f the 2:1 phyllosilicates the preparation of oriented aggregates was
equired. The fraction smaller than 2 �m was obtained by sedimen-
ation in aqueous media, and the characterisation of phyllosilicates
n oriented aggregates was performed after they were subjected to
everal treatments (air dried, solvation with ethyleneglycol, ther-
al  treatment at 550 ◦C). The XRD patterns were obtained on a

ruker D8-Advance diffractometer, with CuK� radiation, from 3◦

o 70◦ 2� with a step of 0.03◦ and a counting time of 1 s, whereas for
he oriented aggregates they were obtained from 3◦ to 40◦ 2� with

 step of 0.02◦ and a counting time of 1.5 s. The quantitative anal-
ses were carried out following the procedure outlined elsewhere
22].

Table 2 lists the main crystalline phases that were quantified in
he examined soils. Phyllosilicate content ranged from 6.8% at ALM
o 71.9% at CABRIL, whereas the 2:1 phyllosilicate content ranged
rom 4.3% at ALM soil to 64% at CABRIL.

.4. Determination of radiocaesium solid–liquid distribution
oefficients
The Kd(Cs) values were determined using two batch sorption
ests, which differed in the composition of the contact solution.
he first set of data was obtained in a medium that simulated the
ous Materials 197 (2011) 11– 18

cationic composition of the soil solution. Soil samples (1 g) were
equilibrated for 16 h with 50 mL of a solution that represented the
cationic composition of the soil solution of each soil. After four
pre-equilibrations, soils were equilibrated for 24 h with the same
solution, but were labelled with 137Cs (CS137ELSB45; LEA FRAMA-
TONE). The Kd(Cs) values were determined by measuring the 137Cs
level in the supernatant before and after equilibration.

A second dataset was  obtained with a contact solution derived
from the soil wash-off. This solution was  obtained by equilibrating
soil samples (1 g) in water (30 mL  g−1) with end-over-end shaking
for 16 h. Subsequently, the wash-off solution in contact with the
soil was spiked with 137Cs and shaken for 24 h. The Kd(Cs) values
were calculated from 137Cs levels in the supernatant before and
after equilibration.

The 137Cs activity was  measured in samples derived from
the sorption experiments in 20 mL  capacity polyethylene vials
using a solid scintillation detector (PACKARD MINAXI 5000 Series)
equipped with a 3-inch NaI (Tl activated) crystal. The measurement
time was set so that the RSD < 0.5%.

Table 1 also includes the ranges of Kd(Cs) values obtained in
the two  contact media. From the statistical descriptors, it could
be observed that the Kd(Cs) values obtained in the batch experi-
ments with the contact solution that simulated the soil solution
composition were systematically lower.

2.5. Radiocaesium-specific soil parameters

2.5.1. Determination of Radiocaesium Interception Potential
In a soil homoionically saturated with K or NH4

+, which are
competitive species for Cs, the sorption of radiocaesium at the FES
depends on the total capacity of these sites [FES], the sorption selec-
tivity of Cs compared with that of K or NH4

+ (KC
FES(Cs/X)) and the

concentration of K or NH4
+ in the contact aqueous phase (mX), as

shown in the following equation:

KFES
d (Cs) = [FES]

mX
· KFES

C (Cs/X) (1)

Because the FES capacity is difficult to measure, one of the
approaches to predict the Kd

FES(Cs) is based on the Radiocae-
sium Interception Potential (RIP) concept, which represents the
Kd

FES(Cs)·mX product and estimates the soil ability for specific
radiocaesium sorption because it also gives a direct measure of
KC

FES (Cs/X)·[FES].
The RIP was  determined in K and NH4

+ scenarios (RIPK and
RIPN). RIPK was determined after preequilibrating the soil sam-
ple (1 g) with 50 mL  of a solution containing 100 mmol L−1 of Ca
and 0.5 mmol  L−1 of K (Kss = 0.5). After four preequilibrations, soils
were equilibrated for 24 h with the same solution but labelled with
137Cs, and the related Kd(Cs) was determined. The calculated prod-
uct, Kd(Cs)·Kss, was associated with the RIPK value [23]. RIPN was
determined using the same procedure but using a 0.5 mmol  L−1

NH4
+ solution.

2.5.2. Changes in the Kd(Cs) due to changes in NH4
+

concentration in the contact solution
The Kd(Cs) values were obtained in a solution with Ca and K (100

and 10 mmol L−1, respectively). The Kd(Ca–K) values were obtained
in an additional five solutions with the same concentration of Ca
and K but with increasing NH4

+ concentrations (0.50, 1.0, 2.5, 4,
5 mmol  L−1. The Kd(Ca–K–NH4) values were obtained to evaluate
how the system responded to increasing concentrations of NH4

+ in

the mixed Ca–K–NH4

+ scenarios. Soil samples (1 g) were preequili-
brated with 50 mL  of these solutions, and after 3 preequilibrations,
soils were equilibrated for 24 h with the same solution but labelled
with 137Cs.
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Table  1
Range of values for the soil characteristics.

Variable Code Unit Min  Max  AM GM

pH pH – 4.3 9.2 7.0 6.9
Organic carbon Corg % 0.2 9.4 3.3 2.1
Carbonate content CaCO3 % 1 51 13.9 6.6
Cationic exchange capacity CEC cmolc kg−1 21.3 89.3 42.2 39.0
Exchangeable Na Naexch cmolc kg−1 0.12 19.6 1.4 0.69
Exchangeable K Kexch cmolc kg−1 0.19 10.2 1.3 0.81
Exchangeable Ca Caexch cmolc kg−1 3.5 52.0 13.1 10.8
Exchangeable Mg  Mgexch cmolc kg−1 0.45 14.1 2.7 1.8
Exchangeable NH4

+ NH4exch cmolc kg−1 0.06 2.6 0.36 0.22
Clay  fraction (wrt. initial soil weight) Clay % 6.3 52.4 22.9 20.7
Sand  fraction (wrt. initial soil weight) Sand % 4.5 86.8 43.1 36.8
Field  capacity FC % 6.2 56.1 27.8 26.1
Electrical conductivity EC �S cm−1 89 3390 738 481
Wash-off experiments

Na in the contact solution Nass mmol  L−1 0.01 3.6 0.35 0.11
K  in the contact solution Kss mmol  L−1 0.02 0.35 0.095 0.075
Ca  in the contact solution Cass mmol  L−1 0.01 6.6 0.70 0.29
Mg  in the contact solution Mgss mmol  L−1 0.01 0.76 0.12 0.065
NH4 in the contact solution NH4ss mmol  L−1 0.02 0.96 0.091 0.047

Soil  solution experiments
Na in the contact solution Nass mmol  L−1 0.17 128 11.8 2.0
K  in the contact solution Kss mmol  L−1 0.13 23.7 1.8 0.79
Ca  in the contact solution Cass mmol  L−1 0.44 52.1 14.3 8.3
Mg  in the contact solution Mgss mmol  L−1 0.17 72.5 6.8 2.4
NH4 in the contact solution NH4ss mmol  L−1 0.016 11.4 1.1 0.24

Radiocaesium distribution coefficient
Wash-off experiments K L kg−1 153 34 945 8203 5239

A

s
a
w
c

T
M

d

Soil  solution experiments Kd L kg−1

M, arithmetic mean; GM,  geometric mean.

If radiocaesium sorption were governed by the RES, the Kd(Cs)
hould not change, because NH + and K are equally competitive
4
t these sites and, consequently, the ratio Kd(Ca–K)/Kd(Ca–K–NH4)
ould tend to approach unity. If radiocaesium sorption were asso-

iated with the FES, the Kd(Cs) should be sensitive to the changes

able 2
ain crystalline phases quantified by XRD analyses (%, wrt. initial soil weight).

Soil sample Quartz Calcite + dolomite Phyllosilicates 

ALM 86 ndb 6.8 

ANDCOR <5 <3 12.2 

ASCO  21 50 13.9 

AYUD 26 16 50.2 

BAD1 67 nd 26.5 

BAD2  57 <5 34.6 

BILBAO 29 nd 30.3 

CABRIL 25 nd 71.9 

DELTA1 nd <5 30.0 

DELTA2 10 59 14.4 

ENUSA 59 nd 15.9 

FONCOR 26 nd 13.3 

FROCOR 31 nd 18.4 

GAROÑA  31 44 19.1 

GOLOSO 23 nd 7.4 

GRACOR 46 nd 37.4 

LEON  52 nd 34.4 

MALAGA 18 18 63.8 

OVI01 38 nd 43.0 

OVI03 55 nd 30.7 

TENF1 <5 nd 49.4 

TENF2 5 nd 42.9 

TRILLO 19 56 19.2 

UIB  25 30 32.8 

UPV <5 70 16.7 

USAL  39 <3 22.9 

VAN1 33 33 10.9 

VAN2  27 38 30.9 

VILCOR 77 nd 18.6 

ZORITA 21 50 22.0 

a 2:1 phyllosilicates: sum of illite, smectite and vermiculite contents.
b nd, not detected.
10 19 437 3111 1185

in the NH4
+ concentrations in the contact solution because NH4

+ is
more competitive than K at these sites. This latter case is described

by the following equation [24,25]:

Kd(Ca − K)
Kd(Ca − K − NH4)

= 1 + KFES
C (NH4/K)

NH4,ss

Kss
(2)

Illite Smectite Vermiculite 2:1 phyllosilicatesa

4.2 nd 0.1 4.3
7.2 nd 5.0 12.2

10.7 nd 0.3 11.0
44.2 0.5 nd 44.7
11.4 10.3 nd 21.7
10.4 19.3 nd 29.7
25.1 0.6 nd 25.7
64.0 nd nd 64.0
24.0 nd 0.3 24.3

9.8 nd nd 9.8
9.1 0.2 0.6 9.9
6.0 nd 0.5 6.5

10.5 0.2 0.7 11.4
12.2 1.0 nd 13.2

3.6 1.4 nd 5.0
4.1 nd 1.5 5.6

17.5 nd nd 17.5
34.5 10.9 nd 45.3

9.9 nd nd 9.9
4.9 nd 0.9 5.8

28.2 4.4 1.5 34.1
0.9 28.8 0.4 30.1

14.2 nd nd 14.2
26.5 0.7 nd 27.2
16.7 nd nd 16.7

9.4 10.3 nd 19.7
8.4 0.5 0.1 9.1

22.3 nd 0.6 22.9
7.8 nd 1.1 8.9

16.4 nd 0.3 16.7
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Table 3
RIPK (mmol  kg−1), RIPN (mmol kg−1), and KC

FES (NH4/K) values obtained by two
methods.

Soil sample RIPK RIPN Kc
FES (NH4/K)

RIPK/RIPN Derived from Eq. (2)

ALM 1002 316 3.2 8.7
ANDCOR 366 140 2.6 6.2
ASCO 2034 512 4.0 6.5
AYUD 4929 1368 3.6 7.5
BAD1 1523 376 4.1 8.3
BAD2 2594 613 4.2 6.2
BILBAO 4419 2052 2.2 9.4
CABRIL 4852 1234 3.9 10.2
DELTA1 1186 298 4.0 7.2
DELTA2 1463 337 4.3 7.4
ENUSA 744 249 3.0 7.3
FONCOR 340 128 2.7 4.4
FROCOR 179 74 2.4 7.7
GAROÑA  2080 749 2.8 5.3
GOLOSO 672 204 3.3 5.2
GRACOR 1017 303 3.4 8.3
LEON 2314 910 2.5 10.0
MALAGA 5958 1824 3.3 6.9
OVI01 3221 1009 3.2 8.3
OVI03 1718 825 2.1 7.6
TENF1 6669 4914 1.4 4.4
TENF2 6758 2128 3.2 5.0
TRILLO 2897 838 3.5 7.4
UIB 7000 1595 4.4 7.1
UPV 3213 714 4.5 7.6
USAL 1874 753 2.5 5.7
VAN1 660 205 3.2 6.2
VAN2 4488 803 5.6 8.0
VILCOR 225 103 2.2 5.1
ZORITA 2371 687 3.5 6.8
Min  179 74 1.4 4.4
Max 7000 4914 5.6 10.2
AM 2626 875 3.3 7.1
4 C.J. Gil-García et al. / Journal of H

where Kss and NH4,ss are the K and NH4
+ concentrations in the

ontact solution in mmol  L−1, Kd(Ca–K) and Kd(Ca–K–NH4) are the
d in the absence or presence of NH4

+, respectively, and KC
FES

NH4/K) is the NH4-to-K selectivity coefficient at FES.

.6. Quality control

Intermediate activity solutions of 137Cs were prepared by dilut-
ng weighed amounts of commercial solutions of each radionuclide

ith deionised water and used as internal controls for mea-
urements with a PACKARD MINAXI 5000 Series instrument.
dditionally, parallel blank experiments were carried out for each
nalysis without a soil sample but with the same procedures for
he sorption tests.

.7. Data treatment

The application of regression models was carried out in con-
ideration of three Kd(Cs) datasets, which were dependent on
hat the models examined: Kd(Cs) from the wash-off experiments,

d(Cs) from the soil solution experiments, or the global dataset.
he application of the mechanistic models was only carried out
n consideration of the global dataset. Single and multiple linear
orrelations related to the mechanistic models were performed
sing STATGRAPHICS Plus (StatPoint Technologies, US) software,
hereas Unscrambler® 6.11a software (CAMO ASA, Norway) was
sed to carry out the regression modelling based on the Partial Least
quares regression (PLS).

. Results and discussion

.1. Use of mechanistic models

.1.1. Construction of the global mechanistic model and
stimation of the KC

FES(NH4/K)
As radiocaesium sorption in soils is controlled by FES and RES,

wo contributions are expected for the total Kd(Cs) in soils: the
d

FES(Cs) and the Kd
RES(Cs). The relative weight of each contribu-

ion depends on the soil type [4,7,26].
The Kd

FES(Cs) can be predicted by dividing the RIPK value (in
mol  kg−1) by the sum of the K, NH4

+ and Na concentrations
n the soil solution (in mmol  L−1) and by multiplying the NH4

+

nd Na contributions by their respective selectivity coefficients in
ES (Kc

FES(NH4/K) and Kc
FES(Na/K) because at the FES, the relative

electivity of these monovalent cations differs from 1 [23,27]. The
d

RES(Cs) can be calculated by dividing the sum of the exchange-
ble K, NH4

+ and Na (in mmol  kg−1) by the sum of the K, NH4
+ and

a concentrations in the soil solution [17,23]. The derived equation
ay  be written as follows:

d(Cs) = KFES
d (Cs) + KRES

d (Cs) = RIPK

Kss + KFES
C (NH4/K) · NH4,ss + KFES

C (N

Sodium has little significance in Cs sorption, with the excep-
ion of Cs sorption in saline soils; a good estimation of Kc

FES(Na/K)
s 0.02. By including NH4

+ in the prediction of Kd
FES(Cs), a proper

uantification of the Kc
FES(NH4/K) value is required. Kc

FES(NH4/K)
an be determined using two approaches. In the first approach,
he ratio between the RIP obtained in the K and NH4

+ scenarios
28] can be used, and in the second, the changes in the Kd(Cs) after
hanging the NH4

+ concentration in the contact solution in mixed
a–K–NH4

+ scenarios (as described in Section 2.5.2) can be used.

Table 3 presents the Kc

FES(NH4/K) values obtained by the two
pproaches, and Fig. 1 displays four examples of the changes
n Kd(Cs) that occurs with increasing NH4

+ concentration. In
his case, the Kc

FES(NH4/K) is derived from the slope of the
 · Nass
+ Kexch + NH4,exch + Naexch

Kss + NH4,ss + Nass
(3)

GM 1760 557 3.2 6.9

AM,  arithmetic mean; GM,  geometric mean.

Kd(Ca–K)/Kd(Ca–K–NH4) vs. NH4,ss/Kss correlation. The quantifi-
cation of the Kc

FES(NH4/K) coefficient depends on the approach
followed, because the values from the mixed scenario experiments
were consistently higher (around 2.3-fold higher, as a mean value)
than those derived from the RIP ratio. This is the first time that a sys-
tematic comparison of Kc

FES(NH4/K) coefficients derived from the
two approaches has been performed. An explanation for the higher
values of the Kc

FES(NH4/K) coefficient derived from the mixed
scenario experiments may  be that the lower K and NH4

+ concentra-
tions used for the RIP calculations might not ensure homoionic FES
in soils with high clay content. When one focuses on the range of
values derived from both approaches, the fact that the Kc

FES(NH4/K)

values were consistently higher than 1 confirms that FES govern
the radiocaesium sorption in these soils.

3.1.2. Prediction of the Kd(Cs) on the basis of the global and
simplified equations

The use of the Kc
FES(NH4/K) values derived from either the RIP

ratio or the mixed scenario experiments did not affect the mech-
anistic model, because similar experimental vs. predicted Kd(Cs)

were obtained (log Kd(Cs)exp = 0.98 (±0.02) log Kd(Cs)pred, n = 60,
r = 0.94; and log Kd(Cs)exp = 1.04 (±0.02) log Kd (Cs)pred, n = 60,
r = 0.90, respectively). Both of these cases show that the multi-
ple correlation represented by Eq. (3) succeeded in predicting the
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ig. 1. Response of the Kd(Cs) to increasing NH4
+ concentrations in a Ca–K–NH4

cenario in four of the soils of the data set: (�) Foncor, (�) Zorita, (�) Bad1 and (×)
abril soils.

d(Cs) in soils. As an example, Fig. 2 shows the results of the predic-
ion exercise from Eq. (3) by using the Kc

FES(NH4/K) value derived
rom the mixed scenario experiments.

The use of Eq. (3) requires a full characterisation of the soils.
herefore, simpler models could be necessary in case there is a lim-
ted soil characterisation. As has been suggested previously [4],  a
alue of 5 can be taken for KC

FES(NH4/K) if its value is unknown for
 given soil. This value is also consistent with the arithmetic mean
alue of all the KC

FES(NH4/K) values obtained in the present work.
dditionally, the role of Na can be disregarded due to the low value
f the KC

FES(Na/K). Taking these two assumptions into account,
he model still predicted the experimental values of the Kd(Cs):
he resulting correlation was similar to the correlation obtained
efore the assumptions were made (log Kd(Cs)exp = 1.01(±0.02)

og Kd(Cs)pred, n = 60, r = 0.92).
Further assumptions to simplify the model might have a more

ignificant effect on the correlations. One option is to focus on the
d

FES(Cs) and to neglect the Kd
RES(Cs). A rapid calculation confirmed
hat for many soils, the Kd
FES(Cs) accounted for more than 90% of

he global Kd(Cs), but in a few soils, the percentage decreased to
3% (e.g., the FROCOR soil). As the additional information needed

1

2

4

Kd pred

K
d e

xp

Soil solution
Wash-off

slope = 1.04 ±0.02
r = 0.90
n = 60

10101 2 10 3 10 4 10 5

105

10

103

10

10

1

1

Kd pred

K
d e

xp

Soil solution
Wash-off

slope = 1.04 ±0.02
r = 0.90
n = 60

2 10 3 10 4 10 5

105

10

103

10

ig. 2. Prediction of Kd(Cs) values with Eq. (3),  using Kc
FES(NH4/K) values

erived from mixed scenario experiments. The solid line represents the ideal
d(Cs)exp = Kd(Cs)pred relationship.
ous Materials 197 (2011) 11– 18 15

to calculate the Kd
RES(Cs) is the concentration of cations in the

exchangeable complex, this simplification would not add signif-
icant value, because this information is often available. Another
option is not to include the NH4

+ data. The NH4
+ concentration,

and thus its role in the prediction of Kd(Cs), could be high in wet
and peat soils, whereas it could be lower than the value of K in
mineral soils [19]. The equation that results from this additional
simplification would be as follows:

Kd(Cs) = KFES
d (Cs) + KRES

d (Cs) = RIPK

Kss
+ Kexch

Kss
(4)

The correlation obtained with the simplified equa-
tion was  slightly worse than the previous correlations
(log Kd(Cs)exp = 0.88(±0.02) log Kd(Cs)pred, r = 0.89), but it still
ensured a proper prediction of the Kd(Cs) values.

A major limitation of these mechanistic models’ ability to pre-
dict the Kd(Cs) values is the fact that a Kd(Cs) value must be obtained
to quantify the RIPK value. To date, attempts to predict the RIPK
value based on soil properties have only been partially success-
ful, because the RIPK value is multivariantly dependent not only
on the clay content but also on the type of clay and geological ori-
gin of the soil [29]. Both the phyllosilicate and 2:1 phyllosilicate
contents had similar correlations with respect to the RIPK values
(for instance, RIPK = 92 (±30) phyllosilicate, n = 30, r = 0.76) in the
examined soils; both variables were strongly correlated (r = 0.85).
Another parameter that may  correlate with the RIPK is the clay con-
tent of the corresponding textural class, which is a parameter that
is easier to quantify because it does not require additional XRD
analyses. In this case, the correlation was slightly worse (RIPK = 130
(±60) clay, n = 30, r = 0.65). The inclusion of the silt content, which
was also derived from textural analyses, only improved the per-
centage of the RIPK variability in the case of a multiple regression
with the phyllosilicate content (RIPK = 93 (±26) phyllosilicate + 61
(±28) silt −1700 (±1140), r = 0.86). Any of these correlations could
be used to predict the Kd(Cs) when a previous prediction of the
RIPK values exists. For instance, when the RIPK value is substituted
by its correlation with the clay content, a worse correlation was
obtained (log Kd(Cs)exp = 0.84(±0.02) log Kd(Cs)pred, r = 0.74). With
this model, the Kd(Cs) is predicted based only on general soil prop-
erties, such as the texture and K status in the exchangeable complex
and the soil solution. However, the correlation is still good enough
to generate input data for environmental and decision support
models.

3.2. PLS-based regression-modelling

An alternative to using mechanistic-modelling to predict the
Kd(Cs) from soil properties is to use regression-modelling, which
requires a large database of samples and variables and takes into
account soil properties that either are directly associated with the
radiocaesium sorption in soils or are properties that affect the sorp-
tion process. A data matrix was  constructed with rows related to
the soil samples and columns related to the soil variables, with the
aim of evaluating the capacity of multivariate regression-modelling
in the prediction of Kd(Cs) values. In order to assume normal dis-
tributions of variables, the data were transformed to logarithmic
units, with the exception of pH. Data were also autoscaled prior
to analysis – i.e., mean centred (each element was subtracted by
its mean column) and scaled to unit variance (each element was
divided by the standard deviation of its column) – to give the same
weight to all variables in the analyses.

PLS builds a model between a sample variable (y) and a set

of other sample descriptors (X) in a low-dimensional space that
is formed by PLS components. It finds the model with the maxi-
mum  covariance of the relationship between the X- and y-space
[30,31], as y = XB,  where B is the matrix of regression coefficients
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alculated in the PLS space. Full cross-validation was used to
etermine the number of PLS components that provided a minimal
alue of the Root Mean Square Error of Cross Validation (RMSECV):

MSECV =

√√√√√
n∑

i=1

(yi
predicted − yi

experimental)
2

n
(5)

Further details on the theoretical background of the PLS algo-
ithm and on the applied software can be found elsewhere [32].

.2.1. Identification of the relevant variables in the regression
odels

PLS was first used to determine which soil variables were rele-
ant to the prediction of the Kd(Cs). This was achieved by evaluating
he quality parameters of the models and the value and sign of
he regression coefficients. The soil solution, the wash-off, and the
lobal datasets were modelled separately to reveal which vari-
bles better explained the Kd(Cs) in each dataset. The role of the
lay fraction, which is one of the key soil properties that affects
adiocaesium interaction in soils, was evaluated by either the phyl-
osilicate content, determined by mineralogical analysis, or the
lay content, determined by textural analysis. The weight of RIPK
n the model was also assessed. Table 4 summarises the statisti-
al description of the cross-validated PLS-based regression model
btained in each case. Four PLS components were considered for
omparison purposes because the explained cumulative variance
f y was higher than 80% in many cases. Additional PLS compo-
ents slightly improved the quality parameters of the models, but
he relevance of variables did not vary.

When the RIPK variable was used to construct the model, almost
dentical results were obtained for the three data sets, regardless
he variable selected to account for the role of clays, because the
d(Cs), and thus the regression model, was strongly affected by the
IP variable. Satisfactory regressions (r > 0.9) with slopes close to 1
ere obtained, confirming the absence of bias in the models and,

herefore, of systematic overestimations or underestimations of
d(Cs). However, the y explained cumulative variance was slightly
etter for the global dataset due to the wider range of values. The
MSECV values, calculated after back-transforming the logarith-
ic  values of the predicted Kd(Cs) to their original units, were also

ery similar for the three models (from 3300 to 4200). The regres-
ion coefficients of the regression models were also compared to
dentify the most relevant variables that describe the Kd(Cs) vari-
bility in each case. The direction and magnitude of the influence
f variables can generally be associated with the sign and the mag-
itude of its regression coefficient. However, as soil variables may
e partially correlated, the related regression coefficients cannot be
onsidered in an individual or completely independent way. Only
he most salient trends in the regression coefficients can safely
e used for chemical interpretation. For example, Fig. 3a shows
he regression coefficients obtained for the global dataset, includ-
ng RIPK and clay texture variables. Non-significant variations in
he relative relevance of variables were observed when phyllosil-
cates were included instead of clay texture; similar conclusions
ould also be drawn from the regression coefficients of the three
ata sets. Among the clearest trends was the high negative corre-

ation of the concentration of competitive species, K and NH4
+, in

he contact solution; this trend was evident in all three data sets.
nother general trend was the relevance of RIPK and clay texture,
hich presented high positive regression coefficients. These find-

ngs were consistent with the mechanisms that dictate the Kd(Cs)

2,25,33,34].

As shown in Table 4, when RIPK was excluded from the
atabases, the quality parameters of the models were still satis-
actory, but they were worse than when the RIPK variable was
Fig. 3. Regression coefficients of the PLS models using the global dataset and the
clay texture to describe the clay content, (a) including RIPK and (b) excluding RIPK.

retained, especially in the datasets with a smaller amount of data.
Again, the models that considered the clay texture were similar
to those that considered phyllosilicates. Based on the regression
coefficients (Fig. 3b), the relative relevance of the soil parameters,
except for clay texture, is similar to the results from the model con-
structed with the RIPK variable. The results are especially similar
with respect to the 2:1 phyllosilicate variable and the concentration
of cationic species in the contact solution, which became significant
in the prediction of Kd(Cs).

3.2.2. External validation of the PLS-based regression models
In contrast to mechanistic-modelling, which employs a fixed

equation based on soil parameters to predict the Kd(Cs), the PLS-
based regression models require an additional step to predict Kd(Cs)
values for samples that have not been used to calibrate the model.
For the external validation step, two-thirds of the samples of the
global dataset were selected for calibration and to construct the
regression model using the Kennard–Stone algorithm [35], and the
remaining samples were used as the prediction set. Models were
constructed with or without RIPK, and in each case, the total phyl-
losilicates or clay texture variables were considered.

The regression models obtained with the reduced calibration
sets had a pattern of regression coefficients and quality parame-
ters similar to those obtained in the previous section. For instance,

the y explained cumulative variance was  85% when RIPK was
not considered and 90% when RIPK was  considered. The slopes
were 1, the regression coefficients were greater than 90, and
the RMSECV values were of the same order of magnitude as
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Table  4
Description of the cross-validated PLS models (4 PLS components) to predict Kd (Cs).

Dataset n y explained cumulative variance (%) RMSECVa Experimental vs. predicted regression

Slope R

With RIP and total phyllosilicates
Soil solution 30 85 3700 0.99 ± 0.04 0.90
Wash-off 30 83 3300 1.00 ±  0.02 0.90
Soil  solution + wash-off 60 89 4100 1.00 ± 0.02 0.94
With  RIP and clay texture
Soil solution 30 86 3400 0.99 ± 0.04 0.91
Wash-off 30 86 3300 1.00 ± 0.02 0.91
Soil  solution + wash-off 60 89 4200 1.00 ± 0.02 0.94
Without RIP and with total phyllosilicates
Soil solution 30 79 5300 0.99 ± 0.04 0.86
Wash-off 30 67 4100 0.99 ± 0.03 0.79
Soil  solution + wash-off 60 84 4100 0.99 ± 0.02 0.91
Without RIP and with clay texture
Soil solution 30 80 4300 0.99 ± 0.04 0.87
Wash-off 30 70 3600 1.00 ± 0.03 0.81
Soil  solution + wash-off 60 85 

a Value calculated after back-transforming the logarithmic predicted values to original
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Fig. 4. Validation of the PLS models with the prediction set. Experimental vs. pre-
dicted Kd(Cs) correlations obtained with the PLS models using the global dataset and
the clay texture to describe the clay content, (a) including RIPK and (b) excluding
RIPK, in which the solid line represents the ideal Kd(Cs)exp = Kd(Cs)pred relationship.
4100 0.99 ± 0.02 0.92

 y units.

previously obtained. These statistics confirmed that the data used
to construct the new regression model was  representative data.

In each case, the model was  externally validated with the corre-
sponding test set. For example, Fig. 4a and b shows the correlations
between experimental and predicted Kd(Cs) values with or with-
out RIPK, respectively, for data sets with the clay texture variable.
The two  correlations were satisfactory, with slopes close to unity
and regression coefficients close to or higher than 0.9. These results
confirmed the robustness and the absence of bias in the PLS-based
regression models and indicated that the Kd(Cs) could also be pre-
dicted with the regression models without the RIPK variable.

4. Conclusions

Both mechanistic and PLS-based regression models succeeded
in predicting Kd(Cs) with satisfactory correlations between exper-
imental and predicted values. Among mechanistic models, the
model with the highest requirements in terms of soil data pro-
vided the best prediction. However, it was  possible to propose
simpler, similarly satisfactory models based on soil properties that
are available from routine analyses, such as the clay content and the
K status in the soil. The PLS-based regression models confirmed
that soil parameters such as the RIPK, the clay content, and the
NH4

+ and K statuses explained the variability in the Kd(Cs) values.
Only slight differences in the models were observed when the clay
content, obtained by textural analysis, or the phyllosilicate con-
tent, obtained by mineralogical analysis, was  used. In all cases, the
regressions had quality parameters similar to those of the mecha-
nistic models. Although better correlations between experimental
and predicted Kd(Cs) were obtained when the RIPK was included as
a soil variable, the prediction of Kd(Cs) was also satisfactory when
this specific soil parameter was  not considered in the regression
model. As the mechanisms of the interaction of a contaminant in
soils are not always well known, PLS-based regression models are
recommended as a powerful approach to examine and to predict
the interaction parameters of any contaminant in soils.
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